Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate.
نویسندگان
چکیده
In this work, the electrical characterization of graphene films grown by chemical vapor deposition (CVD) on a Ni thin film is carried out and a simple relation between the gate-dependent electrical transport and the thickness of the films is presented. Arrays of two-terminal devices with an average graphene film thickness of 6.9 nm were obtained using standard fabrication techniques. A simple two-band model is used to describe the graphene films, with a band overlap parameter E(0) = 17 meV determined by the dependence of conductivity on temperature. Statistical electrical measurement data are presented for 126 devices, with an extracted average background conductivity σ = 0.91 mS, average carrier mobility μ = 1300 cm(2) V(-1) s(-1) and residual resistivity ρ = 1.65 kΩ. The ratio of mobility to conductivity is calculated to be inversely proportional to the graphene film thickness and this calculation is statistically verified for the ensemble of 126 devices. This result is a new method of graphene film thickness determination and is useful for films which cannot have their thickness measured by AFM or optical interference, but which are electrically contacted and gated. This general approach provides a framework for comparing graphene devices made using different fabrication methods and graphene growth techniques, even without prior knowledge of their uniformity or thickness.
منابع مشابه
Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices
Articles you may be interested in Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl. Detection of organic vapors by graphene films functionalized with metallic nanoparticles Oxygen sensing properties at high temperatu...
متن کاملSynthesis and Characterization of Carbon Nanotubes Catalyzed by TiO2 Supported Ni, Co and Ni-Co Nanoparticles via CCVD
Monometallic and bimetallic Ni and Co catalytic nanoparticles supported on Titanium dioxide (rutile phase) substrate were prepared by wet impregnation method. These nanoparicles were used as catalysts for synthesis of multiwalled carbon nanotubes (MWCNTs) from acetylene decomposition at 700°C by the catalytic chemical vapor deposition (CCVD) technique. The nanomaterials (catalyst and CNTs) were...
متن کاملSpatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting
In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated using a typical graphene chemical vapor deposition synthesis process at an elevated temperature durin...
متن کاملFabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization
In this paper, we have studied the electrical properties of the randomly distributed metallic (Co and Fe) nano/ micro wires on Silicon substrate. Deposition was carried out potentiostatically into the pores of the track-etch polycarbonate membrane spin coated onto the Si substrate. Spin coated films were irradiated with 150MeV Ni (+11) ions at a fluence of 8E7 ions/cm2, followed by UV irradiati...
متن کاملGrowth and properties of few-layer graphene prepared by chemical vapor deposition
The structure and the electrical, mechanical and optical properties of few-layer graphene (FLG) synthesized by chemical vapor deposition (CVD) on a Ni-coated substrate were studied. Atomic resolution transmission electron microscope (TEM) images show highly crystalline single-layer parts of the sample changing to multi-layer domains where crystal boundaries are connected by chemical bonds. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2012